Dataset Management
Datasets are collections of test cases used to evaluate your AI agents. Learn how to create, upload, and manage datasets in SupaEval.
Dataset Formats
SupaEval supports multiple formats for dataset upload:
CSV Format
Simple tabular format with required columns: prompt, and optionalexpected_output, metadata columns.
csv
prompt,expected_output,metadata
"What is the capital of France?","Paris","{"difficulty": "easy", "category": "geography"}"
"Explain photosynthesis","Plants convert light into energy...","{"difficulty": "medium", "category": "science"}"JSON Format
Structured format allowing richer metadata and nested fields.
json
{
"dataset_name": "geography_qa",
"test_cases": [
{
"prompt": "What is the capital of France?",
"expected_output": "Paris",
"metadata": {
"difficulty": "easy",
"category": "geography"
}
},
{
"prompt": "What is the largest ocean?",
"expected_output": "Pacific Ocean",
"metadata": {
"difficulty": "easy",
"category": "geography"
}
}
]
}Creating Datasets
Via SDK
python
from supaeval import SupaEval
client = SupaEval(api_key="your_api_key")
# Create dataset from file
dataset = client.datasets.create_from_file(
name="geography_qa",
file_path="./dataset.csv",
description="Geography questions and answers"
)
print(f"Dataset created: {dataset.id}")Via Dashboard
- Navigate to the Datasets page
- Click "Create Dataset"
- Upload CSV/JSON file or create test cases manually
- Add metadata and tags
- Save dataset
Best Practices
- Start with 10-20 diverse test cases
- Include edge cases and failure scenarios
- Add metadata for filtering and analysis
- Version datasets when making significant changes
Dataset Versioning
SupaEval automatically versions datasets when you update them. This ensures:
- Reproducible evaluation runs
- Historical comparison of agent performance
- Rollback capability if needed
Managing Datasets
Listing Datasets
Filter by Tags
Organize datasets using custom tags
Search by Name
Quickly find datasets by name or description